
SCALABLE AND ACCURATE SMT-BASED MODEL CHECKING OF
DATA FLOW SYSTEMS

CESARE TINELLI

UNIVERSITY OF IOWA, THE (INC)

10/30/2013
Final Report

DISTRIBUTION A: Distribution approved for public release.

AIR FORCE RESEARCH LABORATORY
AF OFFICE OF SCIENTIFIC RESEARCH (AFOSR)/RSL

ARLINGTON, VIRGINIA 22203
AIR FORCE MATERIEL COMMAND

AFRL-OSR-VA-TR-2013-0582

Page 1 of 1

11/14/2013file:///C:/Users/bristolp/Documents/STINFO%20Support/DTIC%20Title%20Page%20-%...

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

2. REPORT TYPE

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

 11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

a. REPORT

b. ABSTRACT

c. THIS PAGE

19b. TELEPHONE NUMBER (include area
code)

 Standard Form 298 (Re . 8-98) v
Prescribed by ANSI Std. Z39.18

30-09-2013 final 01-06-2009 -- 31-05-2013

!
Scalable and Accurate SMT-based Model Checking of Data Flow Systems

FA9550-09-1-0517

!
Tinelli, Cesare!
Kahsai, Temesghen !
Sticksel, Christoph

!
The University of Iowa!
105 Jessup Hall!
Iowa City, IA 52242-1316

!
AF Office of Scientific Research!
875 N. Ralndolph St. Room 3112!
Arlington, VA 22203

AFOSR

!
Publicly Releasable

!
Model checking is a form of formal verification that can be used to check certain correctness properties of hardware or software
systems mostly automatically. This project's overall objective was to improve the effectiveness and usefulness of model
checking for embedded reactive software, the sort of software typically used in avionics. In particular, it sought to extend the
scalability of model checking to systems with a very large or infinite state space, improve its accuracy, and develop modular
model checking methods for infinite-state systems.!
The project achieved its objectives by developing techniques based on automated reasoning engines called SMT solvers,
which work with more powerful logics than propositional logic, the logic of choice in traditional model checking. These
techniques were implemented in a automated model checker called Kind. Experimental results with Kind show that the new
techniques provide superior scalability and precision. The tool has been adopted by several research groups from academia,
government and industry. An internal reimplementation of Kind is now used regularly at a major avionics company.!

Model checking, formal verification, reactive software

U U U

!
UU

Cesare Tinelli

319-335-0735

Scalable and Accurate SMT-based
Model Checking of Data Flow Systems

Grant no: FA9550-09-1-0517

Final Performance Report

1 Introduction

The overall objective of this collaborative project between the University of Iowa and New York
University (grant no. FA9550-09-1-0596) was to improve the effectiveness and usefulness of model
checking for the debugging and verification of reactive software systems. Specifically, the project
aimed at:

• extending the scalability of model checking to systems with a very large or infinite state
space;

• developing modular approaches for the model checking of infinite-state systems;

• improving the accuracy of model checking in applications relying on non-linear arithmetic.

The project focused on software systems that could be modeled as synchronous data-flow sys-
tems. Its main research hypothesis was that it would be possible to dramatically increase in the
scalability and accuracy of model checking for such systems by moving to formulations and auto-
mated reasoning engines that rely on more powerful logics than propositional logic. In particular,
it considered fragments of first-order logic that can be efficiently decided by solvers for Satisfia-
bility Modulo Theories (SMT). The main advantages of using SMT solvers for model checking are
that: (i) SMT solvers are quite efficient in practice; (ii) reductions of model checking problems
into first-order logic can be exponentially more compact than reductions into propositional logic;
and (iii) many infinite-state systems can be modeled directly and faithfully using SMT without
resorting to finite-state abstractions. The rationale for moving to SMT-based model checking was
that it would enable the development of a new generation of model checkers able to model func-
tional aspects of reactive systems of realistic size and complexity with a high degree of accuracy,
and verify their functional properties largely automatically.

The project sought to achieve its three main objectives through the following research compo-
nents.

RC1: Develop new SMT-based model checking techniques to verify safety properties of synchronous data-
flow systems.

1

RC2: Develop compositional verification methods on top of the SMT-based techniques.

RC3: Implement the new techniques in a model checker for systems specified in Lustre.

RC4: Develop more accurate methods for automated reasoning in non-linear arithmetic.

We focus here on Research Components 1, 2 and 3 because they were the main responsibility
of the Iowa team. A separate report, for grant no. FA9550-09-1-0596, will be submitted by the NYU
team on Component 4 and aspects of the other components that were under its responsibility.

Note. Work on this project at the University of Iowa started about six months after the official
start date of July 15, 2009 because of delays in filling the post-doc position funded by it. A corre-
sponding no-cost extension was requested at the time and verbally approved by the then program
director, Doctor David Luginbuhl. The PI was, however, instructed to wait until the last year of
the project (2013) to make a formal request. This request, made in early 2013, was unexpectedly
denied by the current program director. Largely as a consequence of this effective six month cut
to the project, some of its specific objectives could not be achieved in full, as explained in the next
section.

2 Summary of Significant Work and Results

2.1 Research Component 1

We looked at proving invariant properties of finite and infinite systems with Boolean and nu-
merical variables (both integer-valued and real-valued), initially restricting ourselves to systems
devoid of non-linear arithmetic expressions. Such systems can be expressed in an SMT logic with
uninterpreted function symbols and linear integer and real arithmetic. A property is invariant for
a system if it holds in all of its reachable states. The majority of functional properties of a compu-
tation system can be expressed in terms of invariance. As specified in the proposal, we focused
our efforts in two main directions, discussed in the following.

2.1.1 Adapt existing induction-based model checking approaches to the new logic

Before the start of the project, the PI and his students had done preliminary work on extending
SAT-based k-induction to the SMT logic above. The main feature of that extension is that the
system under analysis and any property to check against it encoded as a set of SMT formulas
instead of a set of propositional ones. Correspondingly, the problem of checking the invariance of
that property is solved by a series of queries to an SMT solver instead of a SAT solver.

A property is k-inductive for some k ≥ 0, if it is satisfied by all system states reachable in up to
k steps, and it is preserved by sequences of k-successive states. k-inductiveness is relevant to us
because it is a sufficient condition for invariance that can be proven automatically with an SMT
solver. k-induction is the process of trying to prove a property k-inductive for some k, usually
by starting with k = 0 and then trying increasingly large values of k. One main limitation of
the k-induction procedure that we used in our previous work is that it was able to check only
one property at time. Multiple properties, which occur commonly in realistic cases, can always
be checked together as a single conjunctive property P, but this is too course-grained and so not
very informative: if some of the properties are invariants and some are not, P itself will not be

2

invariant. On the other hand, checking one properties at a time can fail, as it is harder for an au-
tomated prover based on inductive methods to prove two properties separately than it is to prove
them together. Another limitation is that k-induction is geared towards trying to prove properties
invariant. If a property is not invariant, other methods such as Bounded Model Checking (BMC)
are a lot more effective at showing that.

Enhancements to k-induction We developed a novel parallel, multi-property variant of k-induction
to address the two limitation above, together with a parallel architecture for implementing the cor-
responding model checking procedure. The architecture is strictly message-based and designed
to minimize synchronization delays and easily accommodate the concurrent automatic genera-
tion of auxiliary invariants to bolster basic k-induction. A first level of parallelism is introduced
in the k-induction procedure itself by executing the base step and the inductive step concurrently.
The base step is akin to a BMC search and is aimed at disproving that the input properties are
invariant by finding executions of the system where the properties fail to hold. The inductive
step is aimed at proving the properties invariant by showing that they are k-inductive for some
k, starting with k = 0 and going increasingly higher. Properties that are disproved by the base
step are removed from consideration in the inductive step. Properties that are shown not to be
k-inductive by the inductive step for the current k are kept around for the next iteration to see
if they are k + 1-inductive. Property proved to be k-inductive are used as lemmas to help prove
non-k-inductive properties k + 1-inductive. A second level of parallelism allows the addition of
one or more independent processes that incrementally generate auxiliary invariants for the system
being verified. These invariants are fed to the k-induction loop as soon as they are produced and
used to help prove the input properties by strengthening the k-induction hypothesis.

We implemented this architecture in a parallel model checker for Lustre programs (see Sec-
tion 2.3). We evaluated this architecture first on benchmarks consisting of a Lustre system and a
single property, and then on a smaller but more challenging set of benchmarks consisting of a Lus-
tre system and a several properties. The results of the first evaluation are discussed in [PDMV11]
(see Section 3.1); those of the second evaluation are discussed in [NFM12].

2.1.2 Develop new techniques for strengthening induction hypotheses

While k-induction is completely automatable for the SMT logic we considered in this project, it
is a fairly weak model checking method. In particular, it might fail to prove large numbers of
invariant properties as such (by trying increasingly larger values of k and never succeeding). This
is because there exist invariant properties that are not k-inductive for any k. Although with infi-
nite state systems there is no automated procedure that is guaranteed to prove arbitrary invariant
properties, it is possible to enhance the basic k-induction process to increase the number of prop-
erties it can prove. An effective way to do that is to enrich the description of the system with
the assertion of other properties that are already known to be invariant for that system. Strength-
ening the system’s description this way can turn a previously non-k-inductive property into a
k-inductive one (increasing k-induction’s precision), or make a k-inductive property k′-inductive
for a considerable smaller k′ (increasing speed). Since auxiliary invariants are notoriously difficult
or time-consuming to specify manually, an important research problem is how to generate them
automatically.

3

Brute-force invariant generation In much of previous work, invariants are synthesized from the
system’s description, using sophisticated algorithms guided by the semantics of the description
language. In this project we developed instead a complementary and novel approach based on
a somewhat brute-force invariant discovery scheme—which nonetheless proved to be effective in
practice. The approach looks for possible invariants by sifting through a large set of automati-
cally generated formulas expressing state properties. These formulas are all instances of the same
template, the parameter of the scheme, representing a decidable relation over one of the system’s
data types. Specifically, we devised a general invariant discovery scheme that, a template formula
R[x, y] in two arguments, looks for invariants that are instances R[s, t] of the template where s and
t are terms chosen from a some set U of interesting terms. The set U can be constructed heuristically
in any number of ways from S and a given set of properties to be proven invariant for S .

The general scheme relies on the availability of efficient reasoning engines, such SMT solvers,
and capitalizes on their ability to quickly generate counter-models. It consists of a two-phase
procedure, with an optional third phase not discussed here. Given the template R and the term set
U, the first phase starts with the (very crude) conjecture that the state property C =

∧
s,t∈U R[s, t] is

invariant. Then, it uses the SMT solver to weaken that conjecture by eliminating from it as many
conjuncts R[s, t] as possible that have a counterexample—specifically, all conjuncts falsified by a
k-reachable state, for some heuristically determined k. The resulting formula C is passed to the
second phase, which attempts to prove C k-inductive by checking that it satisfies the inductive
step of k-induction. Any counter-examples there are used, conservatively, to weaken C further by
eliminating additional conjuncts until no counter-examples exists. The final formula—the empty
conjunction in the worst case—is by construction k-inductive, and so invariant.

The scheme above is impractical in its full generality because the number of instances of R over
U can be very large. So we devised two specializations to relations R that are partial orders, one
for general posets and one specific to binary posets. These specializations rely on the properties
of partial orders to represent the conjunctive conjecture C compactly, and weaken it efficiently.

We devised an incremental, on-line version of the procedure above that generates k-inductive
invariants progressively, for successive values of k. As templates R we used the ≤ relation over
integer terms and the ⇒ (logical implication) relation over Boolean terms. In the context of the
parallel model checking architecture described above, the auxiliary invariants of the form s ≤ t
or s ⇒ t are generated concurrently to the base and inductive steps of k-induction, and are sent
to the latter step as soon as they are generated. This approach was rather successful experimen-
tally, yielding considerably improvements in terms of the number of property that k-induction
can prove. For instance, focusing on single property benchmarks, auxiliary invariant generation
was able to improve the precision of our k-induction procedure from 61% to 85% on a set of about
500 benchmarks of different size, complexity and origin. More details on our invariant generation
procedure and on our experimental results can be found in [NFM11].

Mode invariant generation We developed a further enhancement to our invariant generation
procedure based on the realization that embedded systems often contain complex modal behav-
ior that describes how the system interacts with its environment. In these systems, the modes of
the software drive the behavior of the device. For instance, in a flight guidance system, an ap-
proach mode enables a control procedure that attempts to land the airplane, while a go-around
mode enables a controller that attempts to climb the aircraft to a suitable safe altitude. These
modes are often designed as state machines or mode transition tables. In addition, embedded

4

systems typically have several parallel mode machines that communicate with one another to de-
fine the control state of the system. Understanding which variables in a systems model are mode
variables, i.e., represent system modes, and discovering relationships between such variables often
determines whether a safety property can be proven or not.

We developed a method for identifying likely mode variables automatically, and discovering
invariant relationships among them. We did that by adapting the template-based invariant gen-
eration method described above. The new method heuristically considers as a mode variable any
system variable that (i) ranges over a (small) finite set of values and (ii) whose next-state value
is determined in part by its current value. We generalized this idea slightly to mode variable sets in
which strongly-connected variables define a particular system mode. Then we developed a gen-
eral invariant generation method to identify implicative relationships between values of mode
variables (e.g., x = 4⇒ y = 1).

We implemented the method in our k-induction model checker and evaluated it on a complex
hierarchical problem, made publicly available by NASA. This is the formal model of a system that
controls the approach behavior of the Space Shuttle when docking with the International Space
Station. As the shuttle approaches the ISS it goes through several operational modes related to
how the shuttle is to orient itself for capture, dock with the ISS, and capture the ISS docking latch,
among several other operational modes. The model describing this behavior is quite intricate and
consists of a hierarchical and parallel state machine with three levels of hierarchy and multiple
parallel state machines, including a total of 64 states. In this model, there are several properties
related to invariants that must be true in certain stages of approach, and sequencing conditions
that describe allowable paths through the state machine. The model is quite difficult to analyze
and it had previous required hand-written mode invariants to prove interesting properties using
k-induction solvers. For the purposes of this experiment, we created five reduced versions of
the docking approach model in which we replaced one of the complex hierarchical states with
a simple state that approximates its behavior. This allowed us to examine the behavior of our
invariant generation method over a range of state machine models with different characteristics
(the hierarchical states vary substantially in size).

We ran our model checker in various configurations. The basic one, k-induction with no in-
variants, was able to prove only 42% of all properties over the 5 models. Activating the invariant
generation method described earlier improved precision to %80. Adding mode invariant genera-
tion allowed our checker to push that up further to %91. Details on this work and the experimental
evaluation be found in [NFM12].

Invariant generation with SMT-based automatic abstract transformers Abstract interpretation
is currently one of the best approaches for discovering useful invariants for a system, in particular
numerical ones. However, its application is limited by two orthogonal issues: (i) developing an
abstract interpretation is often non-trivial; each transfer function of the system has to be repre-
sented at the abstract level, depending on the abstract domain used; (ii) with precise but costly
abstract domains, the information computed by the abstract interpreter can be used only once a
post fix point has been reached; this may take a long time for large systems or when widening
is delayed to improve precision. We developed a new, completely automatic, method to build
abstract interpreters which, in addition, can provide auxiliary invariants for the system under
analysis before reaching the end of the post fix point computation. In effect, such interpreters act
as on-the-fly invariant generators and can be incorporated in the parallel architecture described

5

earlier, again to improve the precision of the main k-induction component.
While motivated by practical issues (namely, the generation of invariants for k-induction model

checkers) our method is more general and can be adapted to a wide variety of contexts. It only
requires that a system’s semantics be expressible in a decidable logic with an efficient solver, such
as SAT or SMT solvers, and that the elements of the chosen abstract domain be effectively rep-
resentable by formulas in that logic. Such requirements are satisfied by a large number of ab-
stract domains used in current practice. As a consequence, we believe that our approach could
help considerably in expanding the reach of abstract interpretation techniques to a variety of tar-
get languages, as well as facilitate their integration with complementary techniques from model
checking.

Since our original motivation was proving invariant properties of Lustre programs expressible
in our SMT logic we built an abstract interpreter, called Kind-AI, for such Lustre programs that
computes the abstract transformer automatically, and generates a stream of invariants during its
fix point computation. As abstract domain we use one defined, as usual, as a reduced product
of a variety of abstract numerical domains, including relational and non-relational ones. Our
experimental results were encouraging although not as strong as for the other methods. On the
other hand, our implementation was relatively unsophisticated as far as abstract interpretation
tools go, so it is plausible that further work on that would produce more impressive result.

Details of our abstract interpreter construction and our experimental results can be found in
[NSF’13].

2.2 Research Component 2

Work on this component was cut short by the early termination of the project. We worked on
developing a framework for compositional verification that capitalizes on the fact that data-flow
languages, such as Lustre, have direct support for modularization, module reuse, and compo-
sition. Systems described in these languages not only tend to be highly modular but also often
come equipped with a specification of local invariants for each sub-module. We designed our
framework to take advantage of the preexisting decomposition of the overall system and the en-
vironmental assumptions already provided by its developers.

We started to develop an abstraction and refinement mechanism that abstract submodules by
their (separately proved) invariants. These invariants could be either directly provided by the
user or computed by the model checker itself using the invariant generation methods developed
in Research Component 1. The advantage of this approach would show in systems with large
or complex submodules in cases when, to prove a property of the top-level system, it is enough
to know only a few invariant properties of the visible behavior of the submodule, as opposed
to its full definition. In those cases, scalability can be improved by replacing the module by its
properties during the model checking process. Unfortunately, we did not have enough time to
complete the development and the implementation of the framework even if we have much of the
low-level infrastructure in place. As a consequence, we do not have any experimental evaluation
to report for this research component.

2.3 Research Component 3

We implemented all the methods described above in the Kind model checker, a model checker
written in OCaml that we had started to implement before this project. A major expansion and

6

refactoring of the checker was done in mid project to turn Kind into a parallel model checker,
called PKind, with support for multiple properties and incremental invariant generation. Both
PKind and Kind are publicly available in source form and have a very liberal free-software license.

Last year it became clear that PKind, although quite successful, was not the best platform to
continue our investigations, for a number of reasons: it was burdened by legacy code, a lot of
which corresponded to several variants of our techniques that we had produced for experimenta-
tion purposes; it had not been written from the beginning to be parallel and so was suboptimal in
some respects; it was unnecessarily tied to Lustre, whereas our techniques were general enough
to be applicable to system models expressed in a variety of languages. Hence in the summer of
2012 we decided that it was time to start from scratch implementation-wise. Since then we have
focused on the development of the next generation of the model checker, called Kind 2, while do-
ing minimal development and maintenance of PKind and its predecessor—both of which we will
collectively refer to as Kind 1 in the following.

Kind 2 is a from-scratch reimplementation of Kind 1 that builds on the experience and exper-
tise we accumulated during the development of Kind 1. It starts with a much cleaner design and
architecture distilling the features that have proven most useful and effective in Kind 1, and pro-
vides the basis for further research and development. Kind 2 was designed from the beginning
on to be parallel based on a lightweight message-passing architecture, extensible to support mul-
tiple novel model checking engines, and easily portable to different operating systems. Also, it
provides a clean and complete separation between the front end and the model checker proper
through a client-server architecture. It is designed to support a variety of front ends, both local
and remote, and more than one model specification language. Support for Lustre and a textual
interface, as in Kind 1, is maintained to facilitate the migration from Kind 1.

In terms of its internal architecture, Kind 2 still has basic components implementing multi-
property k-induction with auxiliary invariant generation, similar to Kind 1. However, it adds other
model checking methods, starting with a property directed reachability (PDR) method which
extends to infinite-state systems. This method, originally called IC3 and developed by Aaron
Bradley at the University of Colorado, has shown to be highly successful in the area of hardware
model checking. In Kind 2, components implementing this method work in parallel with those
on k-induction and cooperate with them through the exchange of invariants and information on
proved and disproved properties. To enable the exchange of invariants, Kind 2 provides a gen-
eral invariant collection and dispatching mechanism, connecting multiple invariant producers to
multiple consumers (with certain components acting in both roles).

Our expectation is that, thanks to its fresh implementation and innovative architecture, Kind 2
will be a better platform for further research while at the same time serving the needs of the core
Kind 1 user base, which includes users at Universities (Iowa, Minnesota), governmental agencies
(NASA, Onera) and companies (Rockwell Collins).

Kind 2 is currently available only as an alpha release with limited features, although those
features are fully functional. Kind 2 is built, again in OCaml, on a low level infrastructure that
allows it to have a client-server architecture where the system’s front end is a client and the model
checker proper is a server that can be located on a different network node. This will facilitate the
creation of different front ends (interactive/batch, text-based/GUI-based/web application) and
allow the client and the server to run even on nodes with different operating systems.

The development of a PRD engine of Kind 2 was motivated by the success of the original IC3
procedure and the question of whether this success could be replicated with infinite-state systems.

7

Table 1: Precision of Kind 1 and Kind 2 on 925 single-property benchmark problems with both
valid and invalid properties

(a) Number of problems proved

Properties
Valid Invalid

(1) Kind 1 292 438

(2) Kind 2, k-ind. 258 384
(3) Kind 2, PDR 292 345
(4) Kind 2, k-ind. + PDR 331 389

(b) Problems proved exclusively
by one version

Properties
Valid Invalid

(1) only 55 93
(3) only 55 0
(1) and (4) 237 345

Like k-induction, IC3 uses inductive arguments to prove that a given property P is invariant for a
given system. However, it works rather differently. One of its crucial aspects is the generalization
of counterexamples to its induction steps, from single states to entires sets of them. Our PDR
procedure is an SMT-based extension of IC3 whose distinctive feature is a general method for the
generalization of induction counterexamples based on an efficient form of approximate quantifier
elimination. The approximation is computed in two stages and is driven by counterexample. An
initial experimental evaluation indicates that our approach makes quantified elimination practical.
In particular, it is competitive with advanced k-induction implementation in Kind 1. Interestingly,
the two approaches show complementary strengths, suggesting that a parallel combination of the
two can be beneficial.

We have completed the implementation of the PDR engine for Kind 2, and added an initial
implementation of a k-induction engine similar to the one in Kind 1. Initial comparisons of the
performance of Kind 2, using the PDR engine only, with Kind 1, using k-induction show that for
valid properties, Kind 2’s precision is already competitive with that of Kind 1. Interestingly, each
system can prove valid properties that the other cannot prove. Moreover, they show different
runtimes on the majority of the properties they can both prove. Therefore, we expect that the PDR
engine and the reimplementation of the k-induction engine of Kind 1 will complement each other
and considerably improve the performance of the overall system, both in terms of precision and
runtime.

Both engines run in parallel, where the k-induction part itself is composed of two separate
parallel processes for the base and the induction step. All three processes, as well as future in-
variant generators and model checking engines, are controlled by and communicate through a
central invariant collector and dispatcher. We evaluated Kind 1 (PKind) against Kind 2 with com-
binations of the k-induction and PDR engines enabled and disabled. The results were obtained on

8

large compute cluster at the University of Iowa. Since this cluster is a shared resource and com-
plete isolation from other jobs on a compute node was not always possible, the runtime results
are not completely accurate, but even accounting for this noise in the datasets, there are certainly
significant trends.

Table 1 shows the precision of Kind 1 and Kind 2 on a set of 925 single-property bench-
mark problems that contains both invariant and non-invariant properties. Kind 2 with only the
k-induction engine enabled lags behind Kind 1, which only has a k-induction engine. This was ex-
pected because Kind 2’s k-inductive engine is still fairly basic, lacking several high- and low-level
enhancements present int Kind 1. That said, Kind 2 with only the PDR engine shows compara-
ble performance; more importantly, proves a number of properties that Kind 1 cannot solve. The
combination of the k-induction engine with the PDR engine is superior to Kind 1 in the number
of proved invariant properties. Since in either system non-invariant properties are mostly discov-
ered by the bounded model checking component of k-induction, Kind 1 has an advantage here.
However, there are a few properties disproved only with the PDR engine.

More details on our extension of PDR to the infinite-state case using SMT solvers and on its
implementation in Kind 2 can be found in a technical report submitted for conference publication
and available at http://clc.cs.uiowa.edu/Kind/TACAS14/.

3 Significant Accomplishments

3.1 Archival Publications

Note Extended versions of the publications below, together with detailed experimental results,
are available at http://clc.cs.uiowa.edu/Kind.

[NFM11] T. Kahsai and Y. Ge, and C. Tinelli. Instantiation-Based Invariant Discovery. In M. Bo-
baru, K. Havelund, G. Holzmann, R. Joshi editors, Proceedings of the 3rd NASA Formal Meth-
ods Symposium. Volume 6617 of Lecture Notes in Computer Science. Springer, 2011.

[PDMV11] T. Kahsai and C. Tinelli. PKind: A parallel k-induction based model checker. In J. Bar-
nat and K. Heljanko editors, Proceedings of the 10th International Workshop on Parallel and Dis-
tributed Methods in Verification. Volume 72 of Electronic Proceedings in Theoretical Computer
Science. 2011.

[NFM12] P.-L. Garoche, T.Kahsai, C. Tinelli and M. Whalen. Incremental verification with mode
variable invariants in state machines. In A. Goodloe and S. Person editors, Proceedings of
4th NASA Formal Methods Symposium. Volume 7226 of Lecture Notes in Computer Science.
Springer, 2012.

[NFM12b] C. Tinelli. SMT-Based Model Checking. In A. Goodloe and S. Person editors, Pro-
ceedings of 4th NASA Formal Methods Symposium. Volume 7226 of Lecture Notes in Computer
Science. Springer, 2012.

[NFM13] P.-L. Garoche, T. Kahsai and C. Tinelli. Incremental Invariant Generation using Logic-
based Automatic Abstract Transformers. In G. Brat, N. Rungta and A. Venet editors, Proceed-
ings of the 5th NASA Formal Methods Symposium. Volume 7871 of Lecture Notes in Computer
Science. Springer, 2013.

9

Invited talks

1. SMT-based model checking and verification of data flow programs. University of Delaware, Newark,
DE. October 2009.

2. Scalable and Accurate SMT-Based Model Checking of Data Flow Systems. Safe and Secure Systems
and Software Symposium. June 2010.

3. SMT-based model checking. Summer School on Formal Techniques, Atherton, CA. May 2011.

4. Incremental and parallel model checking for synchronous systems. Safe and Secure Systems and
Software Symposium. June 2011.

5. Incremental SMT-based model checking of synchronous systems. Microsoft Research, Redmond,
WA. April 2012.

6. SMT-based model checking. NASA Formal Methods Symposium, Norfolk, Virginia, USA.
April 2012.

7. Incremental SMT-based model checking of synchronous systems. United Technologies Research
Center, October 2012.

8. Incremental SMT-based model checking of synchronous systems. Max Planck Institute for Com-
puter Science, Germany. July 2012.

9. SMT-based safety checking. The University of North Carolina, Charlotte. April 2013.

Software

• The Kind and PKind model checkers. Model checkers for Lustre programs mainly devel-
oped in this project. Available in source format at http://clc.cs.uiowa.edu/Kind.

• The Kind 2 model checker. From scratch-reimplementation of (P)Kind. Currently available
in an alpha-release version at https://github.com/kind-mc.

Impact

• Various version of the Kind model checker have being used extensively by researchers at
Rockwell-Collins; the University of Minnesota; NASA, Ames; Verimag, a French research
center in embedded system; ONERA, a French aeronautics, space and defense research lab.

• While we did not collect statistics on the number of downloads of Kind, its website has had
about 4,000 unique visits since December 2010 from around the world; of these, about 2,700
where first time visits. This indicates a strong wide interest in the tools produced by this
project.

• The most substantial external user of Kind is Rockwell-Collins which has also implemented
from scratch an internal version closely based on PKind but leaner and written entirely in
Java—for better integration in they tool chain.1

1https://github.com/agacek/jkind.

10

• The initial results obtained in this project inspired a collaboration with ONERA which re-
sulted in a year long visit to Iowa by one of their researchers, Pierre-Loı̈c Garoche.

• The work done on this project has also led to two collaborative projects on related topics
with Rockwell Collins and the University of Minnesota, one funded by AFRL and one by
NASA.

• It has also enabled an initial exploratory collaboration with United Technologies Research
center, funded by them, on possible applications of Kind to their verification problems.

• As a consequence of the expertise on model checking of data flow language that the PI ac-
quired in this project, he was invited as keynote speaker at the 2010 NASA Formal Methods
Symposium (the other two keynote speakers were Patrick Cousout and Andrew Appel).

• For the same reason, he was also invited by the prestigious École Normale Supérieure in
Paris to visit there for a month in 2014 to work with ENS faculty on further applications of
the model checking technology developed on this project.

11

